COURSE OUTLINE
Session 1
Introduction to pandas, numpy, scipy and jupyter, extended tricks, jupyter magic commands and technics
Session 2
Data manipulations
Session 3
Data visualization
Session 4
Sklearn. Classifiers, regressors, pre and post processors, cross validation, pipelines. Custom classifier/preprocessor, postprocessor
Session 5
Python, jupyter environment configuration. External libraries: xgboost, tensorflow, pytorch
Session 7
Textual features. Nltk. Sound data analysis
Session 8
Image data. Opencv. Geodata
Session 9
Time series data
Session 10
Time series and linkage to supplementary data sources. Graph data
Session 11
Python and jupyter integrations. Google docs, chatbots, interface prototyping, data annotation, scrapping
Session 12
Heavy dataset processing with python instruments
Session 6
Data pipeline versioning
Session 13
Automl, hyperparameter optimization, etc
Session 14
Finals
Session 15
Pet project demonstration