COURSE OUTLINE

Session 1

Introduction to pandas, numpy, scipy and jupyter, extended tricks, jupyter magic commands and technics

Session 2

Data manipulations

Session 3

Data visualization

Session 4

Sklearn. Classifiers, regressors, pre and post processors, cross validation, pipelines. Custom classifier/preprocessor, postprocessor

Session 5

Python, jupyter environment configuration. External libraries: xgboost, tensorflow, pytorch

Session 7

Textual features. Nltk. Sound data analysis

Session 8

Image data. Opencv. Geodata

Session 9

Time series data

Session 10

Time series and linkage to supplementary data sources. Graph data

Session 11

Python and jupyter integrations. Google docs, chatbots, interface prototyping, data annotation, scrapping

Session 12

Heavy dataset processing with python instruments

Session 6

Data pipeline versioning

Session 13

Automl, hyperparameter optimization, etc

Session 14

Finals

Session 15

Pet project demonstration